Typed Functional Logic Programming

Ernesto Posse Silvia Takahashi

Departamento de Ingenieria de Sistemas y Computacion
Universidad de los Andes
Apartado Aereo 4976
Bogoté , Colombia,

mposada@impsat.net.co stakahas@uniandes.edu.co

September 9, 1997

Abstract

EPowerFuL is a typed extension of PowerFuL, an untyped lazy functional language extended with the
concept of set abstraction to allow a logic style of programming. EPowerFuL adds a type system in the
style of ML (maintaining the lazy semantics) with strong typing, user-defined types, data constructors,
and pattern matching.

This paper presents EPowerFul’s syntax and semantics. The Extended PowerFul, Abstract Machine,
an extension of the PowerFuL Abstract Machine is briefly described.

Keywords: Programming Language design and implementation, Functional Languages, Logic Lan-
guages

1 Introduction

There have been attempts to bring functional and logic programming together [BL86]. Most of these ap-
proaches have taken the logic paradigm as the starting point [MNRA92]. Others extend a functional language
with concepts extracted from logic programming. PowerFuL [SJ92] falls into this category.

The core of PowerFulL is the non-strict A—calculus enriched with several usual basic primitive constructs
such as conditionals, predicates, etc. This core is extended with the concept of set abstraction. Sets are
first-class objects, so they can be passed as arguments to any function, returned as values, and be part of any
data structure. EPowerFuL adds a type system in the style of ML (maintaining the lazy semantics) [Mil84]
[MTHMO97] with strong typing, user-defined types, data constructors, and pattern matching. The type
system allows user defined types. and pattern matching as found in contemporary functional programming
languages. Arithmetic operations can be made available [Tak94], but as in Prolog, their implementation
involves extra-logical operations.

PowerFuL’s set abstraction may seem equivalent to the concept of list comprehension found in some
functional languages such-as Haskell [JP97]. However, PowerFuL uses an interesting optimization technique
for generating sets through narrowing, and EPowerFuL allows the use of types as set generators in addition
to expressions.

The PowerFuL Abstract Machine (or PAN for short), is an abstract operational model for PowerFul.
[Tak94]. It is an extension of the Categorical Abstract Machine (CAM)[CCMS85] [MAS&6], an operational
model for functional languages. It also borrows elements of the Warren Abstract Machine (WAM) [War83]
EPowerFul’s implementation model is an extension of the PAM, which is able to deal with user defined
types. ,

In this paper we will cover the syntax of EPowerFuL (Section 2), its denotational semantics accompanied
with an informal description of the semantics (Section 3), followed by a brief description of the abstract
machine, and a description of the compilation (Section 4) €29




2 Syntax

Now we present the BNF of EPowerFuL. Terminal symbols are in teletype, non-terminal symbols are in
italic.

stmt =

define identifier as expr (* Value definition *)
| expr
| type identifier = type_ezpr  (* Type definition *)

expr =
atomic_expr
| unary_operator atomic_expr (* Unary primitives *)
| expri binary_operator exprs (* Binary primitives *)
| if expr) then expry else exprs (* Conditional *)
| fun pattern_match_list (* Functional abstraction *)
| expry exprs (* Functional application *)
| let identifier = expry in expry (* Local scoping *)
| { expr } (* Singleton *)
| { expr : qualifier_list } (* Set comprehension *)

atomic_expr 1=
constant (* theral value *)
| identifier (* Variables *)
| C exprlist) (* Tuples *)
| constructor atomic_expr (* Constructor application *)

constant =
true | false | ’identifier | integer | tphi

unary_operator ::=
not | - | fst | snd | isphi?

binary_operator ::=

and | or | = | < | <= | > | »>=
b+ |- I+ |/ | ma
v (* Set union *)
exprlist =

expr | expr , expr_list

qualifier_list .=
qualifier
| qualifier , qualifier_list

qualifier =

identifier in set (* Set membership *)
| expr (* Guard, condition *)
set =

base_type (* bool, atom, or int *)
| identifier (* User defined type *)
| expr (* Any set *)

pattern_match_list ::=
pattern_match
| pattern_match | pattern_match_list

pattern_rmatch 1=

pattern -> expr (* Nu abstraction *)
pattern =
constant * Constant pattern *)

| identifier
| constructor expr
| (pattern, , patterns )
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* Variable pattern *)
* Constructor pattern *)
* Pair pattern *)

(
(
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constructor 1=
identifier
type_expr 1=
identifier
| base_type

| type_expr * type_expr
| sum_type

base_type 1=
bool | atom | int

sum-type 1=
constructor_declaration | constructor_declaration | sum_type

constructor _declaration ::=
constructor . | constructor type_expr

3 Semantics

3.1 Informal semantics

The relevant aspect of the language is set abstraction. As in untyped PowerFuL, there are four expressions
for sets in EPowerFuL:

1. The constant phi: It represents the empty set.
2. The singleton: {expr} . Its value is the set whose only element is the value of ezpr.

3. The union between sets: expry U exprs. Its value is the union of the value of expr; and the value of
expr,, which are set expressions.

4. The set comprehension: {expr:qualifierlist}. Its value depends on the form of the qualifiers. There
are two kinds of qualifiers: membership constraints (identifier in set), and guards (a Boolean ex-
pression). The first declares a variable whose value will be taken from the given set. This variable can
appear both in expr, and the rest of the qualifier list. A guard describes a condition that should be
satisfied, and may include variables declared by membership constraints. Thus, if the set expression is
of the form {expr : id in set,qualifierlist}, it denotes the union of all subsets denoted by clauses
of the form {expr : qualifierlist}, where in each such expression, all free occurrences of id have
been replaced by an element of set (where set can be either an expression denoting a set, a base type
such as bool, atom or int, or a user-defined type).

The language has non-strict semantics, so it uses lazy evaluation for data structures, function application.
and set abstraction.
The domain of values in EPowerFulL is:

D=B+A+Z+DxD+D—=D+P(D)+Ty+ ...+ Ty

Where each T; is a user defined type. There are two forms of user-defined types: product types (tuples), and

sum types (variants): A type defined as type t = t1 * t2 * ... % tn stands for the type of tuples whose
i-th value is of type ti. A type defined as type t = C1 t1 | C2 t2 | ... | Cn tn represents the disjoint
union of types ti, t2, ..., tn. Note that each alternative is distinguished by a data constructor.

A simple example of the traditional functional style in EPowerFuL is the following:

(*Type definition *)
type list = Nil | Coms int * list ;

(* Empty 1list? )

631




define isNil as
fun Nil -> True
| Cons(y,11) -> False

(* Functional list append *)
define append as
fun Nil =-> (fun 1 -> 1)
| Cons(x,11) -> ( fun 12 -> Comns (x, append 11 12) ;

Now an example of the logical style achieved in PowerFuL:

(* The set of prefixes of a given list 1lst *)
{ x: x in list, y in list, 1lst = append x y };

The same idea could be expressed in a logical language such as Prolog, but in Prolog the interpreter would
give us all the solutions independently, while here we have all the solutions grouped in a set which is a first-
class value.

Another interesting example is a function that returns the set of all permutations of a given list:

(* Membership to a list: functional style *)
define member as fun elem ->
fun Nil -> False
| Cons(y,11) -> if x = y then true else member elem 11

(* Remove an element of a list: functional style *)
define remove as fun elem ->
fun Nil -> nil
| Cons(y,11) -> if x = 11 then true else Cons(y, remove elem 11)

(* Permutations a list’s elements: functional logic style *)
define permutations as fun lst ->
if isNil 1st then Nil
else
{ Cons(x, y): x in int, member x 1lst, y in permutations (remove x 1lst) }

3.2 Denotational Semantics

Semantic function £ applied to an EPowerFuL expression and an environment returns a value in domain D.
The following notation is used : p is an environment whose signature is p : Identifiers — D. p(id) is the
value associated with the identifier id in the environment p. p[d/id] represents the environment in which id
is bound to d. That is: p[d/id] = Az.if x = id then d else p(z). Figure 1 list the semantic equations.

3.2.1 Pattern matching

To handle pattern matching we need a couple of auxiliary functions. Function P iterates over the patterns
in the function definition until it finds one that matches its argument.

Plarg,[],p) = L
P(arg, [p— > elrest], p) =
Let r = M(arg,[p],[e],p) in If(Left(r), Right(r), P(arg, [rest],p))

Function P uses function M which verifies if the argument matches the corresponding pattern, and if
50, it evaluates the corresponding expression with the appropriate bindings. It returns a pair whose first
element is True if the match succeeded and False otherwise. Additionally, if it succeeds, the second element
is the value of the expression; if not, it is bottom (L).

We assume we have two functions: CheckCons and RetrCastr. The first verifies the presence of a
given constructor, and the second removes the constructor from its argument. In section 3.2.3 there is an
explanation of these functions.

o Case 1: When the pattern is a constant k:
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Elconstant] p = constant
E[identifier]p = p(identifier) if p(identifier) is defined
= Variable(identifier) otherwise
E[c expr] p = CnstrctApp(C, E[ezpr] p)
Where C is a data constructor of a sum type.
E[unaryop expr]p = UnaryOp(E[expr]p)
Where unaryop € {not,—,fst,snd,isphi?}
and UnaryOp € {Not,Neg, Left, Right,IsPhi}.
The correspondence between unaryop and UnaryOp should be obvious.
Elexpry binaryop expra] p = BinaryOp(Elexpri] p, E[expra] p)
Where binaryop € {and,or,<,<=,>.>=,+,—,*,/,mod, U}
and BinaryOp € {And,Or,Lt,Lte, Gt. Gte, Plus, Minus, Times, Div, Mod, Union}.
The correspondence between binaryop and BinaryOp should be obvious
Elexpr1 = expra] p = DeqD(T[expri], E[expri] p, E[expra] p)
Where T is the function that returns the type of a given expression.
DegD, is a function defined in section 3.2.2
E[if expry then expry else exprs)] p = IF(E[exprl]p, E[expr2] p, £[expr3] p)
Elfun L)p = X d.P(4,L, p)

Where L is of the form p1— > e1|pa— > €2|...pn— > en, in which each p; is a pattern and each e; is an expression.

d is a new identifier. P is the function that defines the semantics of pattern matching and is defined in section 3.2.1
Elexpry expra]p = (E[expri] p)E[expra] p
E[let identifier = expry in expra]p = Elexpra] p[Elexpri] p/identifier)
El{expr:}]p = Singleton(E[expr] p)
E[{expr:condition, qualifierlist}] p = (IFs(E[condition] p, E[{expr:qualifierlist}] p, ¢))
E[{expr : id in genexpr,qualifierlist}]p = AppS(X X. (E[{expr : qualifierlist}] p[X/id]), (E[genexpr]p))
X is a new identifier.
E[{expr : id in type, qualifierlist}] p = type(d).(E[{expr : qualifierlist}] p[d/id))
d is a new identifier.

Figure 1: Denotational Equations

M(arg, [k],[e], p) =
If (DegD(7 [k],arg, k), Pair(True, £[e] p), Pair(False, 1))

e Case 2: When the pattern is a variable z:
M(arg, [z],[€], p) = E[e] plarg/z]

e Case 3: When the pattern is the application of a constructor K with argument the pattern p:
M(arg, [K pl,[e],p) = If(CheckCons(K, arg). .M(RetrCnstr(arg), [p], [¢], p), Pair(False, 1))

e Case 4: When the pattern is a pair of patterns (p1,p2):

M(arg, [(p1,p2)],[e], 0) =
Let a = Left(arg) in
Let b = Right(arg) in
If(And(N(a,pl),N(b,p2)),
Pair(True, (E[fun pi— > (funps— > e)]p)ab),
Pair(False, 1))

N(arg, [k]) = DegD(T[k],arg, k)
N (arg,[z]) = True i
N(arg, [K p]) = If(CheckCons(K,arg), N'(RetrCnstr(K, arg), [p], False)
N (arg, [(p1,p2)]) = And(V (Left(arg),p1),.\"(Right(arg), p2)

In case 4. .M relies on another semantic function called (N) that also performs pattern matching but
without making any bindings or evaluating expressions. After checking the correspondence, M transforms
the pattern matching to evaluate a curried version of the function.
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3.2.2 Equality

Function DeqD is used for determining equality between values of a same type (a base type or a user-
defined type) by performing structural equality between terms. It assumes that type synthesis has been
performed, so that the type of its arguments agree, and so that it can compute equality based on the type
of its arguments. The first argument is the type (this information should be available, for instance in the
expression’s node in the abstract syntax tree). We suppose we have a function BeqB that tests equality
between booleans, AeqA between atoms, and ZeqZ between integers.

o If the first argument is a base type, equality is tested with the appropriate function:

DeqD(t, z,y) = TeqT'(z,y)
Where t € {bool,atom,int} and T € {B, A, Z}

o If the first argument is a product type, the test is recursively performed in its constituent parts:

DeqD(t1 # to,z,y) =
And(DegD(t1, Left(z), Left(y)), DeqD(¢2, Right(z), Right(y)))

e If the first argument is a sum type, it must match the constructors and then recursively test the
arguments of the constructors:

DegD([],z,y) = L
DegD(Ct|L,z,y) =
If (CheckCons(C, ),
If (CheckCons(C,y), DeqD(t, RetrCnstr(C, z), RetrCnstr(C, y)), False),
DeqgD(L, z,y))

3.2.3 Primitive Functions

PowerFuL has primitive functions that are not usually found in other languages. Among these there are
some primitives that deal with constructors. This is also the case of the set-related primitives: IsPhi, IFg,
AppS, and The constant Phi and functions Singleton, Union, and type(X).expr are constructor functions
and define new types of values available in the language’s domain.

CustrctApp is a primitive function that represents the application of a constructor of a sum-type.
CheckCons is a predicate that returns True if its second argument (a value) has a constructor, and it is
equal to the first argument (a constructor tag). Finally RetrCnstr removes the given constructor from its
second argument.

Given T a user-defined sum-type declared: type T = C; Ty | ... Cp Tp. We define:

ConstructorTag(T) = {C1,C2,...,Cn}

CnstrctApp : ConstructorTag(T) x Ty — T
A constructor can be seen as a function of type: T; — T'.

CheckCons : ConstructorTag(T) x D — B

CheckCons(Ci, Cnstrct App(Ci, e)) = True

CheckCons(Ci, Cnstrct App(Kj,e)) = False Where K; # C;
CheckCons(Ci,e) = L Where e is not a constructor application

RetrCnstr : ConstructorTag(T) x D — D
RetrCnstr(C;i, Cnstrct App(Cj,e)) =e
RetrCnstr(C;,e) = L

Phi represents the empty set. IsPhi is a predicate that returns True if its argument is Phi. Singleton
constructs a one-element set with its argument. Union, constructs the union of its arguments (we use
" U.” instead of Union(.,.) to compact notation where warranted). IFg, is defined as If except that if its
argument is undefined, it returns Phi instead of bottom (L). Function AppS distributes a function over all
the elements of a set and unions together all results. Its behavior over expressions of the form type(X).expr
is explained in the next section.
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IsPhi: P(D) —» B

IsPhi(Phi) = True

IsPhi(Singleton(expr)) = False

ISPhl(UIllOl’l(e\pll expra)) = And(IsPhx(e\prl) IsPhi(expra))
IsPhi(l) =

IFs : B x P(D) x P(D) — P(D)
IFs(True,z,y) =
IFg(False,z,y) = y
IFg(Ll.z,y) = Phi

AppS: (D — P(D)) x P(D) — P(D)

AppS(f, Phi) = Phi

AppS(f, Singleton(expr)) = f(expr)

AppS(f, Union(s1.s2)) =Union(AppS(f, sl), AppS(f, s2))

3.3 Narrowing

This section summarizes the narrowing techniques used to obtain logic programming capability in [SJ92].
We extend this technique to deal with user defined types.

In AppS(Ax.body, generator), body should be applied to each element in generator. When using types
instead of expressions, direct enumeration of the elements of a type is theoretically feasible. However, by
making this a primitive an interesting optimization can be achieved.

El{expr : id € type.qualifierlist}]p = type(d).(E[{expr: qualifierlist}]
Where type is either a base type (i.e. bool. atom, or int), or a user.defined type.

In this case. instead of generating every element in type, a variable (d), constrained to take its values from
type, is used. Thus. d becomes an enumeration parameter and is considered a logic variable. An expression
of the form

t(d).body

can be simplified so that body does not have to be evaluated for every element in ¢, as it would be done in

AppS(Ad.body,t).

Instead. body is evaluated in its parametrisized form. This simplification is known as narrowing.
Even with a logic variable, an expression may be simplified. To describe a primitive applied to a logical
variable the following notation is used:

constraint(u).(...prim(u)...).

Here we wish to simplify the primitive prim which occurs somewhere in the body and has as argument a
logic variable u. Consider for instance primitive Not, in expression {e x in bool, ...not x...}. This
translates into

bool(u).(...Not(u)...).

By static type-checking we know that u is constrained to be in bool. Hence, its only possible values are
True and False. Therefore, we can simplify (narrow) and obtain:

bool(u).(...Not(u)...) = (... True...)[False/u] U (...False...)[True/u]
Another example: consider the expression
{e: x in atom, y in atom,...x =7y...}.
This would be ultimately translated into something like

atom(z).atom(y).(... AegA(z,y)...)




that is, a primitive applied to two logical variables, and after narrowing would yield:
atom(z).(... True...)[z/y] U atom(z).atom(y).(z # y)(...False...).

Here we have divided into two possibilities: the equality is either True or False. If it is True, we bind
the two variables together and remove a constraint; if it is false, we add a new constraint that indicates
the inequality between the two variables. Therefore, for each logic variable we have type constraints and
inequality constraints. If AegA is used with only one logical variable instead of two, the result is analogous,
but with less constraints:

atom(z).(... AeqA(z,a)...) = (...True...)[a/z] U atom(z).(z # a).(... False...).

We have analogous rules for primitives that can apply to types that can be narrowed. We include
narrowing for equality primitives, Boolean primitives, and atom primitives, but we do not allow logic variables
for integer primitives, with the exception of ZeqZ which is analogous to AegA.

bool(z).bool(y).(... BeqB(z,y)...) = bool(y).(...y...)[True/z] U bool(y).(... Not(y)...)[False/z].
The conditional can also be applied to a logic variable:
bool(z).(... IF(z,e1,€2)...) = bool(y).(...e;...)[True/z] U bool(y).(...es...)[False/z].

Now, for user defined types we need some special rules:

e If ¢ is a product type of the form ¢; x ¢y then
t(w).(. . prim(u) ...) = t1(v).ta(w).(... prim(u) . ..)[Pair(v, w)/u)

Where v and w are new variables. In this case the logic variable is replaced by a pair of new logic
variables each constrained to a given element type of the product type.

o If ¢ is a sum type of the form Cy ¢1|Cy t|...|C,, t, then

t(u).(...prim(u)...) =
ti(v1).(-..prim(u) .. .)[Cnstrct App(Cy,v1)/u]
Utz (v2).(...prim(u) .. .)[Cnstrct App(Cs, v2)/u]

Utn(un).(- .. prim(u) ...)[Cnstret App(Cn, vn) /]

Where vl, v2, ..., v, are new variables. In this case, we divide the simplification among n alternatives
each of which assigns the logic variable to an object with a constructor, the argument being a new
logic variable constrained to the type associated to the constructor. If the i-th constructor does not
have an argument, it is treated as a constructor whose argument is Nil and there is no need for a new
logical variable:

W) prim(u) ) =
U (... prim(u)...)[Cnstrct App(Cy, Nil)/u] U . ..

This leads to the following rules:

e Given type t of the form ¢; x ¢y then

t(u).(...Left(u)...) =
t1(v).ta(w).(...v...)[Pair(v,w)/u]

t(u).(.. Right(u)...) =
ti(v).t2(w).(...w...)[Pair(v, w)/u]
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e Given type t of the form
Cq t1|C3 to] .. |Ch tn

t(u).(...RetrCnstr(Ci,u)...) = -
t1(v1).(... L..)[CnstrctApp(C1,v1)/u]
Uta(v2).(... L...)[Cnstrct App(Ca,v2)/u]
llJ.t‘z (vi).(...u...)[CnstrctApp(Ci, vi)/ul

Qt',l (vn).(... L...)[Cnstret App(Cn,vn)/u]

Consider for instance the following type definition and the expression that refers to that type:
type t = int*bool ;

{e: x in t, snd x }
The expression’s meaning is of the form
t(u).(...Right(u)...).

This should narrow as:
int(v).bool(w).(... w...)[Pair(v,w)/ul.
If the primitive was not a pair primitive, the result would be L.
Another example: if we have:

type t = None | Some int;

{e: x in t, ...x=Some 2 .}
will be translated into something like
t(u).(...CheckCons(Some,u) . ..).

This can be simplified as

(... False...)[Cnstrct App(None, Nil)/u]U
int(v).(...True...)[CnstrctApp(Some,v)/u].

4 The Abstract Machine

The PAM is based on the Categorical Abstract Machine (CAM) [CCM85] [MA86] and borrows ideas form
the Warren Abstract Machine [War83] to implement its logic capabilities. The PAM’s design resembles that
of the CAMEL [Muc92] which is used implement rule-based functional logic languages. It is important to
point out that EPowerFuL can not be implemented directly using CAMEL because this operational model
does not support sets as first class objects nor inequality.

The CAM has the following data structures: a stack, a current value and a code. The values it deals
with are atoms, pairs, closures for functional abstraction, and closures for dealing with lazy evaluation. The
PAM adds two data structures: a heap to store logic variables and a choice point stack to deal with sets.
The PAM’s state is given by 5-tuple:

(Value,stack, choice — point — stack, heap)

EPowerFul term representation as well as primitive instructions for each of PowerFuL’s primitive functions
must be defined. Atoms. integers, and booleans, basic values in CAML-Like’s denotational domain, are
basic values in the modified CAM. We add a constructor to represent pairs: Pair(.,.) explicitly.
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OLD STATE NEW STATE
C Y S H CP C 4 S H CP
app-s;C (clo(V,C1),phi) S hp CS C phi S hp CS
app-s;Cl (clo(V,C),single(A)) S hp CS Ci (V,8) C:S hp CS
union;C (v,u) S 'hp CS C v S hp ¢p(u,S,C):CS
exe;C phi S hp cp(u,S1,C1)::CS | C1 u S1 hp CS
Figure 2: Transitions for Sets in the PAM
OLD STATE NEW STATE

C v S H CP c v S H CP

cury (t,K);C v S hp CS C  cloy(u,v,K) S hp Ccs

appl;C cloy (t,v,K) S hp CS | XK (v,X) C1:5 mnew(t,X,X)ep CS

dot (X);C v S hp Cs | C (dot,(X,v)) C:S hp 5]

Where C; = (exe;dot(X);C)

Figure 3: Some PAM Instructions

A new- constructor is added to represent singleton sets: single(.). An expression of the form:
expry Uexpry

can be interpreted as ezpr; or expr. Operationally, this is interpreted as follows: when a union be-

tween two sets is found, the first subset is chosen as the result of the computation, and information is

stored so that the machine can restore it when computation of the first subset has concluded. Each choice

point saves the state of the machine at any given moment and is represented with a four-place functor:

cp(Code,Value,Stack,Heap). The instruction that implements union introduces choice points. Its descrip-

tion is shown in Figure 2 along with the definition of app_s. Instruction exe is used to drive computation.
Logic variables are created when implementing objects of the form

t(x).Expr.

We add a new constructor LogVar(.) (at times abbreviated LV(.)) to distinguish logic variables from
other values. The heap is an array of variables in which the following information is stored: its name, value,
type, inequality constraints, and a dependency pointer:

hp(Name, Type, Value, Constraints,Dependency)

If ais variable created through narrowing, it depends on the variable that was narrowed to create it; otherwise,
it depends on itself. When a primitive cannot be applied because of a free variable, narrowing causes new
choice points to be added to the choice point stack and new logic variables may be created.

The symbol table and a type table are active during execution time. The symbol table stores information
regarding defined functions. The type table stores information related to user defined types. This information
will be used to determine narrowing.

Two different structures are used to represent expressions of the form: type(X).Exp. A new kind of
closure (called a constrained closure) is used to represent unsimplified constrained expressions: clo, (t,v,C)
where t is the type of the variable that is being constrained; C is the code which evaluates the constrained
expression and v is the environment where it should be evaluated. Instruction cur, is used to build these
closures. Variables created through narrowing are part of the value of the “top-most” logic variables, but
will not generate constrained closures. When evaluation of a constrained expression is complete, we create a
fully computed object of the form (_dot, (X, value)) where X can be bound to a value which may contain
newly created logic variables. This structure, in fact, is only used when printing.

In Figure 3, transitions for building constrained closures and for applying constrained closures to newly
created logic variables are defined. Notation new(t,X,D)@hp is used to represent a heap that is constructed
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OLD STATE NEW STATE

C \ S H CP | C \ S H CP

br(C1,C2);C  (true,V) S hp CS|CL V S hp (¢S]

br(C1,C2);C (false,V) S hp CS | C2 V S hp cs

br(C1,C2);C (LV(X), V) S hp CsS ct v S  hpltrue/x] cp:CS
cp=cp(C2,V,S,hp[false/X])

not;C true S hp CS | C false S hp Cs

not;C false 5 hp Cs | C true S hp CS

not;C (LV(X),v) S hp CS | C false S hpl[true/X] cp:CS
cp=cp(C,true,S,hp[false/X])

Figure 4: Boolean Based PAM Instructions

from heap hp by adding a new free logic variable X of type t and that depends on Y. Instruction dot (X) also
defined in Figure 3 is called before printing a constrained expression

The general schema for narrowing is the following. The variable is assigned one of the possible values,
and the machine’s data structures are modified accordingly. Additionally, choice points are introduced: one
choice point for each other possible value that the logic variable may have and the corresponding changes to
the machine’s data structures. In fact, we are creating an alternative to which we will return when a failure
1s encountered.

The basic narrowing scheme for PAM instructions that are applied to Boolean values is shown in Figure
4. Instruction br (c1,c2) is used to implement conditionals. Notation hp[val/X] is used to represent a heap
which is obtained from hp by assigning logic variable X the value val.

Figure 5 shows the transition tables for the implementation of AeqA. The interesting case is that in which
both arguments are logic variables. If they are the same variable, we replace the value by true and continue.
If their equality would violate a constraint of any of the two variables, we replace the value by false and
continue. Finally, if neither of these two cases occur. we bind the two variables together and replace the
value by true and add a choice point in which an inequality constraint has been added and the value has
been set to false. Function comp(X,Y) receives two unbound logical variables and returns true if the two
variables are the same variable. false if their equality would violate a constraint, and unknown otherwise.
The following notation is used to indicate changes in the heap: bind(X,Y,hp) to indicate that variables X
and Y are bound together and neq(X,Y,hp) to indicate that inequality constraints have been added for X
and Y indicating their inequality.

Instruction isA(a), described in Figure 3, is used to check if the current value is the atom a If the current
value is is a logical variable say A, it checks if an inequality constraint would be violated if A=a. If so, the
current value is replaced by false. If not, A is assigned the value a, the current value is changed to true,
and a choice point in which with the constraint: A # a and value false is added to the choice point stack.

Other narrowing schemes are shown in Figure 6. When applying fst to a logic variable x of type
(t1%t2), two new logic variables: y and z are added, and x is assigned pair(y,z). Both newly created
variables depend on x. In this case no new choice pint are added. When applying the instruction that
implements constraint retraction to a logic variable x of type (C1 t1 | ... | Cn t2), We add a choice
point for every Ci with the corresponding changes to the machine’s data structures.

The PAM’s correctness was proven in [Tak94].

Compilation consists in translating expressions in PowerFuL’s denotational domain into PAM instruc-
tions. The following is an excerpt of the translation scheme from PowerFul denotational syntax to the
CAM.

CIIAiﬂp=quote(Ai)

C[Az.E],=cur (C[E](p.2))

Cl(Ezxpr,. Bxpr.)],=
push; fre(C[Ezpr.],); swap;
fre(C[Ezpr.],); cons

C[Expr, Expr.],= push; C[Ezxpr.],; swap;
fre(C[Ezprz],); cons; app
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Where hpy =

new(ty,y, x) @ new(ty,z,

Where CS? =

OLD STATE NEW STATE
C v S H Cp C v S H CP
Aeqh;C (a,ay) S hp CS IsA(a);C ai S hp CsS
Aeqgh;C (LV(x),a) S hp CS | IsA(a);C LV(x) S  hp [oF]
Aegh;C (a,LV(x)) S hp CS | IsA(a);C LV(x) S hp cs
Where a is an atom
Aegh;C  (LV(y),LV(x)) S hp CS | C true S hpr  cp:CS
if comp(X,Y)=true
Aeqh;C  (LV(y),LV(x)) S hp CS | C false S hpi  cp:CS
if comp(X,Y)=false
Aegh;C  (LV(y),LV(x)) S hp CS | C true S hpy  cp:CS
if comp(X,Y) = unknown hp1=bind(X,Y,hp)
cp=cp(C,false,S,neq(hp,X,¥))
[ OLD STATE NEW STATE
C vV S H CpP C \ S H CP
IsA(a);C aj S hp CS|C b S hp cS
a] is an atom b = (a= aj)
IsA(a);C LV(X) S hp CS | C false S hp Cs
if comp(X,a) = false
IsA(a);C LV(X) S hp CS | C true S hpla/X] cp:CS
if comp(X,a) = unknown cp=cp(C,false,S,neq(X,A,hp))

Figure 5: Transition Tables for AeqA with Logical Variables

OLD STATE NEW STATE
C \4 S H CP C v S H CP
fst;C Pair(u,v) S hp CS|C u S hp Ccs
fst;C LogVar(x) S hp CS | bot v S hp; CS
where x is of type ti * t»
,x) @ hpl[Pair(y,z)/x ]
OLD STATE NEW STATE
C v H CP c v S H Ccp
retrC(K);C  ConsApp(K ,v) S hp CS v S hp (o]
retrC(K);C  ConsApp(K; ,v) S hp CS C bot S hp cs
where K; # K
retrC(K);C e S hp CS C bot S hp Cs
where e is not of the form ConsApp(,)
retrC(K);C  LogVar(x) S hp CS c ri S hpl CS’
where x is of type t= Cl T1 | | Cn Tn

Cp(carZaS)hPQ)

CP(Carn:S:th)

and r; = if K = C; then LogVar (u;) else _bot

and hp;
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new(t;, u;, x) @ hp[ConsApp(C;,u;)/x ]

Figure 6: Narrowing for User-defined types




C[ConstructorApp (K, Expr)],=

fre(C[Expr],);

mkCnstr (K)
Cl[Left(Expr)],=C[Ezpr],;unt;fst
C[RetrCnstr(K, Expr)],=C[Expr],;unf;retrC(K)
Ctype(z).Bapr],=cur, (type,C[Expr](, . ;unf)

5 Conclusions

PowerFul is a declarative programming language that uses a pure functional language as a starting point.
and achieves logic programming capabilities through relative set abstraction. Its approach is interesting in
that sets and functions are considered first class objects both syntactically and semantically through the use
of domain theory as a unifying semantics.

However interesting from the theoretical point of view, PowerFuL’s syntax is not very user-friendly.
and it lacks many of the features are provided by modern functional languages. EPowerFulL addresses these
drawbacks by adding a type system and changing the syntax so that it resembles modern functional languages
while keeping relative set abstraction so the language’s logic programming capabilities are maintained. The
resulting language is a strongly typed language which is easier to use. Strong typing also simplifies its
semantics, for most of type checking is done at compile time instead of at execution time.

The language is in an early stage of development. and the current implementation does not support the
more advanced features such as polymorphic types. Its syntax is also somewhat restricted. However, a
stack-based implementation model is defined for the language showing its feasibility, and an implementation
of this model has been constructed using OCAML.
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